Unstable manifolds for RFDEs under discretization: the Euler method

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inertial manifolds under multistep discretization

Finite-dimensional inertial manifolds attract solutions to a nonlinear parabolic diierential equation at an exponential rate. In this paper inertial manifolds for multistep discretizations of such equations are studied. We provide an existence result for inertial manifolds under multistep discretization and show that these inertial manifolds converge to the inertial manifold of the original equ...

متن کامل

Euler and Milstein Discretization

"Monte Carlo simulation" in the context of option pricing refers to a set of techniques to generate underlying values–typically stock prices or interest rates–over time. Typically the dynamics of these stock prices and interest rates are assumed to be driven by a continuous-time stochastic process. Simulation, however, is done at discrete time steps. Hence, the …rst step in any simulation schem...

متن کامل

A hybrid multilevel method for high-order discretization of the Euler equations on unstructured meshes

Article history: Received 23 June 2009 Received in revised form 25 January 2010 Accepted 25 January 2010 Available online 4 February 2010

متن کامل

Parametrizing Unstable and Very Unstable Manifolds

Existence and uniqueness theorems for unstable manifolds are well-known. Here we prove certain refinements. Let f : (C, 0) → C be a germ of an analytic diffeomorphism, whose derivative Df(0) has eigenvalues λ1, . . . , λn such that |λ1| ≥ · · · ≥ |λk| > |λk+1| ≥ · · · ≥ |λn|, with |λk| > 1. Then there is a unique k-dimensional invariant submanifold whose tangent space is spanned by the generali...

متن کامل

Euler Characteristics for Gaussian Fields on Manifolds

I will start by briefly discussing some statistical problems related to mapping the brain, both the cerebrum (a 3-dimensional object) and the cerebral cortex, or ”brain surface” (a 2-dimensional manifold in 3-dimensional space). This problem has motivated recent deep results of Jonathan Taylor describing the random geometry of Gaussian random fields on abstract manifolds, which I will describe,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computers & Mathematics with Applications

سال: 2001

ISSN: 0898-1221

DOI: 10.1016/s0898-1221(01)00222-x